An Assessment of Alternative State Space Models for Count Time Series
نویسندگان
چکیده
This paper compares two alternative models for autocorrelated count time series. The first model can be viewed as a ‘single source of error’ discrete state space model, in which a time-varying parameter is specified as a function of lagged counts, with no additional source of error introduced. The second model is the more conventional ‘dual source of error’ discrete state space model, in which the time-varying parameter is driven by a random autocorrelated process. Using the nomenclature of the literature, the two representations can be viewed as observation-driven and parameter-driven respectively, with the distinction between the two models mimicking that between analogous models for other non-Gaussian data such as financial returns and trade durations. The paper demonstrates that when adopting a conditional Poisson specification, the two models have vastly different dispersion/correlation properties, with the dual source model having properties that are a much closer match to the empirical properties of observed count series than are those of the single source model. Simulation experiments are used to measure the finite sample performance of maximum likelihood (ML) estimators of the parameters of each model, and ML-based predictors, with ML estimation implemented for the dual source model via a deterministic hidden Markov chain approach. Most notably, the numerical results indicate that despite the very different properties of the two models, predictive accuracy is reasonably robust to misspecification of the state space form.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملAn iterative method for forecasting most probable point of stochastic demand
The demand forecasting is essential for all production and non-production systems. However, nowadays there are only few researches on this area. Most of researches somehow benefited from simulation in the conditions of demand uncertainty. But this paper presents an iterative method to find most probable stochastic demand point with normally distributed and independent variables of n-dime...
متن کاملOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
متن کاملFundamental Steady state Solution for the Transversely Isotropic Half Space
Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...
متن کامل